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Abstract
We explore the effects of over-specificity in learning algorithms by investigating
the behavior of a student, suited to learn optimally from a teacher B, learning
from a teacher B′ �= B. We only considered the supervised, on-line learning
scenario with teachers selected from a particular family. We found that, in
the general case, the application of the optimal algorithm to the wrong teacher
produces a residual generalization error, even if the right teacher is harder.
By imposing mild conditions to the learning algorithm form, we obtained an
approximation for the residual generalization error. Simulations carried out in
finite networks validate the estimate found.

PACS numbers: 89.70.Eg, 84.35.+i, 87.23.Kg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Neural networks are connectivist models inspired by the dynamical behavior of the brain
[1]. They are not only theoretically interesting models, they can also be used in a number of
applications, from voice recognition systems to curve fitting software. Some of the properties
that make neural networks most useful are probably their potential to store patterns and their
capability for learning tasks.

One of the most well-studied types of networks is feed-forward. What characterizes a
feed-forward network is that the flux of information follows a non-loopy path from input to
output nodes, making the information processing much faster. Perceptrons [2] are feed-forward
networks with no internal nodes and only one output; they have been utilized for a number of
theoretical studies and applications of statistical mechanics techniques [3]. In particular, the
knowledge of Hebbian learning algorithms in an online scenario is quite complete.

Due to their simplicity, perceptrons are excellent systems to test new ideas that could
lead to applications for more sophisticated and realistic systems. This has probably been the
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main motivation for the research focused on a mismatched student–teacher scenario, like when
learning from a noisy teacher [4, 5]. This scenario has recently revisited and extended to the
situation of a student learning from two teachers [6, 7]. The common factor in all these studies
is that the student’s learning algorithm is meant to be used for learning from a generic teacher
(represented mostly by an N-dimensional vector randomly selected from the sphere of radius√

N ). Our aim, in contrast, was to study the mismatched situation where the student applies
an algorithm specific for a particular teacher, to learn from a different one. In this situation, it
is natural to ask if a student prepared to learn from a difficult teacher would be able to learn
from an easier one. To formally analyze this problem we need to quantify the hardness of the
teachers, set up the scenario where the learning process would take place and thus quantify
the student’s performance.

Attempts to quantify hardness as an inherent property of the observed object have given
origin to many formal definitions of complexity [8–12]. Recently [13] L Franco has proposed
to quantify a (Boolean) function’s hardness by the size of the minimal set of examples needed to
train a feed-forward network, with a predetermined architecture until reaching zero prediction
error. He also found [14, 15] that in this minimal set there are many pairs of examples that,
although only differing in a finite number P = 1, 2, . . . of entries, have different outputs,
implying that these examples are located at each side of the classification boundary (similar to
the support vectors for SVMs [16]). Further investigation showed that the average discrepancy
of the function’s outputs (measure over neighboring pairs) is correlated to the generalization
ability of the network implementing the function. In order to contour the use of the neural
network and its minimal training set, Franco proposed to use the average distance sensitivity
directly as a measure of the function’s hardness. This is probably the most suitable measure for
our study given that the nature of the measure itself is linked to the concept of generalization
ability.

In this paper, the systems we studied the most were diluted perceptrons. These systems
have been widely studied using statistical mechanics techniques [17–22] and have also been
used for approximating Boolean functions [23, 24]. In general, dilution gives rise to networks
with fewer connections, which can be more efficient in solving tasks and can be more easily
implemented in hardware. Some of the most important features of diluted perceptrons related
to the present work are the existence of analytical expressions for the sensitivity component
(1) and the associated optimal learning algorithm (see below).

The paper is organized as follows. In section 2, we introduce the concepts used for
obtaining our results. In section 3, we present an analytical study of the mismatched scenario.
Our main result is expression (17) where we present the maximum overlap between student
and teacher as a function of the teacher’s true dilution parameter mB and m, the dilution
parameter the student supposes the teacher presents, for sufficiently large values of the overlap
R. In section 4, we present numerical results that validate our analytical expressions, and in
section 5, we present our conclusions and future work.

2. Background

2.1. Measure of hardness

In the present paper, we study the ability of a student J, using an algorithm specific for
teacher B, to learn from teacher B′. The hardness measure we will use is the average output
discrepancy taken over all pairs of inputs at a given Hamming distance P. Formally, for a given
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Boolean function f : {±1}N → {±1}, the Pth distance sensitivity component dN
P [f ] is the

functional

dN
P [f ] = 2−N

∑
S∈{±1}N

(
N

P

)−1 ∑
S′∈�P (S)

1 − f (S)f (S′)
2

, (1)

where
(
N

P

)
is the binomial factor and �P (S) = {

S′ ∈ {±1}N |∑N
j=1 �(−SjS

′
j ) = P

}
, where

�(x) = 1 iff x � 0 and 0 otherwise. �P (S) is the set of inputs S′ that differ from S in P
entries.

Consider a perceptron characterized by a synaptic vector B(m) ∈ R
N that classifies binary

vectors S ∈ {±1}N with labels σB ∈ {±1} according to the rule σB = sgn(B(m) · S). If the
i-th entry of the synaptic vector [B(m)]i = δ(i ∈ Im)O(

√
N/m) + δ(i /∈ Im) o(

√
m/N) where

Im ⊂ {1, 2, . . . , N} is a set of m (odd) different indexes 1 � i � N and δ(i ∈ Im) = 1 iff
i ∈ Im and 0 otherwise, then B(m) is a diluted binary perceptron. In our calculations, we will
consider [B(m)]i = δ(i ∈ Im)

√
N/m where m � N will be kept finite.

For the binary perceptron B(m), the distance sensitivity component (1) in the large system
limit (P < N → ∞ with p ≡ P/N < ∞) d(m)(p) is given by (A.8)

d(m)(p) = 1

2
− 1

2

(m−1)/2∑
n=0

am
n (1 − 2p)2n+1

am
n = 1

4m−1

(
m

2n + 1

)[(
2n

n

)(
m − 1 − 2n

(m − 1)/2 − n

)(
(m − 1)/2

n

)−1
]2

.

As is shown in Appendix A, and following [24], d(m)(p) are a family of concave functions,
ordered according to d(m)(p) < d(m+2)(p) ∀p ∈ (0, 1

2 ). Therefore, the order given by the
hardness measure coincides with the order given by m; thus the larger m the harder the
Teacher.

2.2. Supervised, online learning

Another reason that appeals for using a diluted perceptron as a teacher is that it is possible
to obtain the correspondent optimal learning algorithm analytically. In a supervised online
learning scenario, the synaptic vector of the student perceptron J is adjusted after receiving
new information in the form of the pair (S, σB), following the rule

Jnew = Jold + F
σBnewSnew√

N
, (2)

where J ∈ R
N , σB = sgn(B · S) is the classification given to the example by the teacher B,

F is the learning amplitude or algorithm and S is an input vector with entries drawn from the
distribution PS(Si = 1) = 1 − PS(Si = −1) = 1

2 . The parameters of the problem are

h ≡ J · S
|J| , b ≡ B · S

|B| , Q ≡ J · J
N

, R ≡ B · J
|B||J|

where h is known as the student’s post-synaptic field, b is the teacher’s post-synaptic field, i.e.
sgn(b) = σB, Q is the normalized length of J and R is the overlap between teacher and student.

Following [3], we found that the equation of motion for the overlap R in terms of the total
number of examples received αN , in the large size limit N → ∞, is

dR

dα
=
〈

F√
Q

[〈|b|〉b|φ − Rφ] − RF 2

2Q

〉
φ

, (3)

3
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where 〈·〉φ represents an average over the distribution P(φ) and φ ≡ σBh. The solution of
this equation represents the evolution of the overlap R as a function of the time α.

The generalization error is defined as the average over a set L of αN -sequences of
examples eg(α) = 〈�(−σJσB)〉L, which in the typical case, i.e. when the teacher is
drawn from a uniform distribution over the N-dimensional sphere, can be expressed as
eg(α) = arccos(R)/π . We define the residual error as the asymptotic value of the learning
curve at large values of α, i.e. e	

g = limα→∞ eg(α).
By the application of a variational technique, it is possible to obtain an expression for

the optimal algorithm Fop. The optimal algorithm is the algorithm that produces the fastest
decaying learning curve and can be generically expressed as

Fop =
√

Q

R
[〈|b|〉b|φ − Rφ],

where 〈 · 〉b|φ is the average over the conditional distribution P(b|φ).

3. Analytical results

Following [26], we can prove (see Appendix B) that, for a perceptron with dilution m

P(φ|m) = 1

2m−1

(m−1)/2∑
k=0

(
m

(m − 1)/2 − k

)
N (φ|Rμk, 1 − R2) (4a)

〈|b|〉b|φ,m =
∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
μk N (φ|Rμk, 1 − R2)∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
N (φ|Rμk, 1 − R2)

(4b)

F (m)
op =

√
Q

R

[∑(m−1)/2
k=0

(
m

(m−1)/2−k

)
μk N (φ|Rμk, 1 − R2)∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
N (φ|Rμk, 1 − R2)

− Rφ

]
, (4c)

where μk = (2k +1)/
√

m and N (x|μ, σ 2) is a normal distribution centered at μ with variance
σ 2. Observe that (4b) is needed for computing the evolution (3), and (4c) represents the
optimal learning algorithm.

Suppose that the teacher is characterized by a dilution mB and the student implements an
algorithm (4c) for learning a Teacher perceptron with dilution m. This is equivalent to having
prepared a student to learn optimally from B(m) and now exposing it to B(mB) �= B(m). Let us
define the quantity

ϒ(φ|R,m) ≡ 〈|b|〉b|φ,m − Rφ. (5)

In this settings, the algorithm has the form F (m) =
√

Q

R
ϒ(φ|R,m) and the distribution of φ is

a function of mB. The evolution of the overlap R is given now by the equation (3)

dR

dα
=
〈

1

R
ϒ(φ|R,m)ϒ(φ|R,mB) − 1

2R
ϒ2(φ|R,m)

〉
φ|mB

which can be reduced to

dR2

dα
= 2〈ϒ(φ|R,m)ϒ(φ|R,mB)〉φ|mB − 〈ϒ2(φ|R,m)〉φ|mB (6a)

= 〈ϒ2(φ|R,mB)〉φ|mB − 〈[ϒ(φ|R,mB) − ϒ(φ|R,m)]2〉φ|mB . (6b)

The overlap R grows from zero to a stationary value; thus, we expect the second term at the
rhs of (6b) to be smaller than the first one. In the asymptotic regime (α → ∞), the derivative
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Figure 1. ϒ(φ|R, m) (full curve) and the probability of the stabilityP(φ|m) (dashed curve) against
φ in units of 1/

√
m for R = 1 (upper panel) and R = 0.99 (lower panel) for m = 9. Observe that

for R = 1 (upper panel), the average of the LHS (7) involves only the points at which ϒ(φ|1, m)

is zero, whilst for R < 1 (lower panel) the same average requires a more intensive calculation.

is zero, implying that no further changes are expected in the overlap, and then we have that

〈ϒ2(φ|R	,mB)〉φ|mB = 〈[ϒ(φ|R	,m) − ϒ(φ|R	,mB)]2〉φ|mB (7)

where R	 ≡ limα↑∞ R(α).
Observe that if m = mB, the second term of the rhs of (6a) is zero, the algorithm applied

is optimal and the overlap reaches R	 = 1 with the smallest possible set of examples. If
perfect learning implies R	 = 1, it is natural to ask for what values of m the student can learn
a teacher with dilution mB without errors. From (4a) and (4b), we have that, for R = 1,

P(φ|mB) =
√

mB

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
δ(

√
mB φ − (2k + 1)) (8a)

ϒ(φ|1,mB) = 1√
mB

[
1 +

(mB−1)/2∑
k=1

�(
√

mB φ − 2k)

]
− φ (8b)

ϒ(φ|1,m) = 1√
m

[
1 +

(m−1)/2∑
k=1

�(
√

m φ − 2k)

]
− φ. (8c)

The lhs of (7), averaged over (8a) is zero (see figure 1). This is due to the fact that
ϒ((2k + 1)/

√
mB|1,mB) = 0. Therefore, in order to satisfy (7), we also need that

ϒ((2k + 1)/
√

mB|1,m) = 0. Particularly, for k = 0 these two equation imply that√
m

mB
= 1 +

(m−1)/2∑
k=1

�

(√
m

mB
− 2k

)
.

5
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Therefore √
m

mB
= 2q + 1, (9)

where q is a suitable, non-negative integer. Thus, the condition for R = 1 to be a solution of
(7) is that there exist q ∈ N ∪ {0} such that m = (2q + 1)2mB.

If this is not true, the solution of (7) is at R	 < 1. We will present an approach based
on the assumption that the root R	 occurs in a regime where the Gaussian distributions
N (φ|R	μk, 1 − R	2) in (4a) and (4b) have a small overlap. This could be ensured if the
separation of two adjacent Gaussian components was larger than two standard deviations, i.e.

R	|μk − μk+1| = 2R	

√
m

� 2
√

1 − R	2 (10a)

1 � m
1 − R2

R2
(10b)

At R = 1, the curve ϒ(φ|1,m) is discontinuous at φ ≡ 2k/
√

m and the probability P(φ|m)

is a linear combination of delta functions centered at φ = (2k + 1)/
√

m (upper panel of
figure 1). For R < 1 (figure 1, lower panel), ϒ(φ|R,m) is continuous and P(φ|m) is a linear
combination of Gaussian distributions centered at φ = R(2k + 1)/

√
m with variance 1 − R2.

In both cases, ϒ(φ|R,m) appears to be a periodic function of φ with period φT ≡ 2R/
√

m,

in the support of P(φ|m)Dφ ⊂ R, i.e.

ϒ(φ|R,m) � ϒ(φ + nφT |R,m),

and particularly for R = 1, we have that

ϒ(φ|1,m) =
(m−1)/2∑

�=0

�[(2(� + 1) − √
mφ)(

√
mφ − 2�)]

(
2� + 1√

m
− φ

)
. (11)

We can approximate ϒ(φ|R,m) by a suitable superposition of normal distributions. Consider
the superposition

ϒ̃(φ|R,m) ≡
∫ ∞

−∞
drg(r)N (φ|r, 1 − R2). (12)

To determine the function g(r), we perform a variational calculation to minimize the error
functional

ε[g] ≡ 1

2

∫
Dφ

dφ[ϒ(φ|R,m) − ϒ̃(φ|R,m)]2.

Observe that the optimal function go(r) is the solution of the equation δε
δg

|go
= 0, which implies

that for all r0 ∈ R we have that∫
Dφ

dφ[ϒ(φ|R,m) − ϒ̃(φ|R,m)]N (φ|r0, 1 − R2) = 0,

in particular if R = 1 (we assume that go(r) is independent of R)

0 =
∫

Dφ

dφ

[
ϒ(φ|1,m) −

∫ ∞

−∞
drgo(r)δ(φ − r)

]
δ(φ − r0)

go(r0) = ϒ(r0|1,m).

6
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Therefore

ϒ(φ|R,m) �
∫

Dφ

dr ϒ(r|1,m)N (φ|r, 1 − R2)

=
(m−1)/2∑

�=0

∫ 2(�+1)R/
√

m

2�R/
√

m

dr

[
(2� + 1)

R√
m

− r

]
N (φ|r, 1 − R2)

= R2

m

∫ 1

−1
dt t

(m−1)/2∑
�=0

N (φ|R(2� + 1 − t)/
√

m, 1 − R2). (13)

Let us define the integral

Im1,m2 ≡
∫

dφ P(φ|mB)ϒ(φ|R,m1)ϒ(φ|R,m2). (14)

Following the development of Appendix C, we have that

Im1,m2 � 1 − R2

[
1 − 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
δ	
m1,k

δ	
m2,k

]
, (15)

where δ	
mj ,k

are given by

δ	
mj ,k

= 2√
mj

[∣∣∣∣
√

mj

mB

2k + 1

2
− 1

2

∣∣∣∣
]

+
1√
mj

− 2k + 1√
mB

, (16)

where [[r]] is the closest integer to r ∈ R.
Observe that from (6a), we have that in the asymptotic regime

0 = 2〈ϒ(φ|R	,mB)ϒ(φ|R	,m)〉φ|mB − 〈ϒ2(φ|R	,m)〉φ|mB

= 2ImB,m − Im,m,

and observing that ImB,m = 1 − R2 (given that δ	
mB,k = 0 ∀k) and

Im,m = 1 − R2 +
R2

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
δ	2
m,k

then

R	2 =
[

1 +
1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
δ	2
m,k

]−1

(17)

and observe that δ	
m,k = 0 if m = (2q + 1)2mB, q ∈ N, which is consistent with (9).

4. Numerical results

Using (17), we plot e	
g = eg(R

	) as a function of
√

m/mB (see figure 2).
To validate our result shown in (17), we run a series of numerical experiments consisting

of a student learning from a Teacher with only one bit (mB = 1). The student updates its
synaptic vector following (2) using a learning algorithm given by (4c) with m = 1, 3, . . . , N.

To compute the generalization error, we average over 50 realizations of the learning curve.
The maximum number of examples considered was 16 000. In figure 3, we present the eg as
a function of α

1
4 for m = 1, 5, 9, 13, 25, 27 and network size N = 51. We have chosen the

exponent 1
4 to better show the curve features at short times and the approach to the asymptotic

regime. It is clear from the picture that for m = 12, 32, 52, the generalization error for large

7
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Figure 2. Generalization error in the asymptotic regime e	
g as a function of

√
m/mB, for

mB = 1, 3, 7. We have use (17) to compute the overlap R	.

Figure 3. Generalization error as a function of α
1
4 , for a teacher with dilution mB = 1 and students

with m = 1, 5, 9, 13, 25, 27, for a network with N = 51. The curves that corresponds to the Hebb
algorithm (F = 1, long dashed) and m = ∞ (dot dashed) are presented as a reference.

α drops to zero as predicted. In order to extract the asymptotic behaviour of the curves, we
applied the Bulirsch–Stoer algorithm [25].

In figure 4, we present the extrapolated values of the learning curves together with the
values estimated by the application of (17) as a function of

√
m. The error bars are estimates

obtained also by the application of the Bulirsch–Stoer algorithm.

8
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Figure 4. Comparison of the asymptotic value of the generalization error using (17) and the
extrapolated values of the curvespresented in figure 3.

5. Conclusions

We studied the generalization capabilities of a student optimally adapted for learning from a
teacher B, when learning from a teacher B′ �= B. We observed that, although the algorithm
the student uses may be suited for learning from a harder teacher (as defined by Franco), that
does not guarantee the success of the process, as revealed by (17). This behavior is due to the
extreme specialization implied by the algorithm (4c). When this algorithm (with parameter m)
is applied to learn from a teacher with mB < m, the student tries to extract information from
bits that the teacher does not use for producing the correct classification. These interference
effects produce mostly bad results, originating a residual error in the asymptotic regime. In
this sense, the algorithm F (m)

op is worse than the Hebb algorithm FHebb = 1.

Despite the discrepancies shown in figure 4, our estimate (17) faithfully reproduces the
qualitative behaviour observed in the simulations. There are two sources of uncertainty that
may account for the observed discrepancies: the (finite) size of the network used and a not
sufficiently large α.

From figure 2, the algorithm obtained by taking the limit m → ∞ in (4c)

F (∞)
op =

√
Q(1 − R2)

2πR2

exp
(− 1

2
R2φ2

1−R2

)
H
(− Rφ√

1−R2

) ,

where H(x) = ∫∞
x

dy e− y2

2 /
√

2π , as reported by [26], produces the zero residual error for
all mB. The Hebb algorithm FHebb = 1 also produces learning curves with the zero residual
error. In figure 3, we observe that the Hebb algorithm performs better than F (∞)

op . This is not a
contradictory result. F (∞)

op is the algorithm that has the best average performance considering a
homogeneous distribution of teachers over the N-sphere. For a measure zero subset of vectors
embedded in the N-sphere, like the perceptrons with finite dilution m, F (∞)

op could perform
worse than the Hebb algorithm, as seems to be the case here.

9
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In order to obtain the fastest decaying learning curve, a student has to infer the correct
dilution of the teacher for choosing the appropriate learning algorithm. Developing an efficient
technique for inferring the correct dilution parameter will be the subject of our future research.
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Appendix A. Distance sensitivity

S and S′ are vectors that differ in exactly P bits, i.e.
∑P

j=1 �(−Sσj
S ′

σj
) = P . Taken S as

a reference, we can construct a Pth neighbor S′ by choosing without replacement P indexes
from 1 to N and flipping the correspondent entries in S. There are

(
N

P

)
different ways to choose

P indexes, each one creating a different set of indexes IP . Introducing the scaled variables
μ = w · S/

√
N and μ′ = w · S′/

√
N by means of Dirac delta functions and adding up over

all possible configurations S, we can express the discrepancy component as

dN
P (B(m)) =

(
N

P

)−1∫ ∞

−∞

dμ dμ̂

2π

dμ′ dμ̂′

2π
�(−μμ′)e−i(μμ̂+μ′μ̂′)

×
∑
IP

∏
j∈IP

cos

(
μ̂ − μ̂′
√

N
B

(m)
j

) ∏
j /∈IP

cos

(
μ̂ + μ̂′
√

N
B

(m)
j

)
. (A.1)

The fraction of sets IP with n � m indexes � � m is
(
m

n

)(
N−m

P−n

)
/
(
N

P

)
and observing that in

the limit P � N → ∞ with P/N = p � 1 we have that

lim
P�N↑∞

(
N

P

)−1(
N − m

P − n

)
= pn(1 − p)m−n.

From equation (A.1), we have that

d(m)(p) =
∫ ∞

−∞

dμ dμ̂

2π

dμ′ dμ̂′

2π
�(−μμ′) e−i(μμ̂+μ′μ̂′)

×
m∑

n=0

(
m

n

)
pn(1 − p)m−n cos

(
μ̂ − μ̂′
√

m

)n

cos

(
μ̂ + μ̂′
√

m

)m−n

.

By adding up the sum, opening up the cosines and applying the identity �(ab) =
�(a)�(b) + �(−a)�(−b), the expression for the sensitivity gets reduced to

d(m)(p) = 2
m∑

n=0

(
m

n

)
(1 − 2p)n

[∫
D(μ, μ̂) cos(μ̂/

√
m)m−n sin(μ̂/

√
m)n

]2

,

where the notation
∫
D(μ, μ̂) f (μ, μ̂) stands for (2π)−1

∫∞
0 dμ

∫∞
−∞ dμ̂ e−iμμ̂ f (μ, μ̂). The

integrals to be solved are

bm
0 ≡

∫
D(η, η̂) cos(η̂)m

bm
n ≡

∫
D(η, η̂) cos(η̂)m−2n sin(η̂)2n

cm
n ≡

∫
D(η, η̂) cos(η̂)m−(2n+1) sin(η̂)2n+1.

10
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Before computing the integrals, observe that for all A > 0 and B � 0∫
D(η, η̂) sin(Aη̂) = − i

4π

∫ ∞

0
dη

∫ ∞

−∞
dη̂ exp(−iη̂η)[exp(iη̂A) − exp(−iη̂A)]

= − i

4π

∫ ∞

0
dη

∫ ∞

−∞
dη̂[exp[−iη̂(η − A)] − exp[−iη̂(η + A)]]

= − i

2
[�(A) − �(−A)]

= − i

2
, (A.2)

similarly∫
D(η, η̂) cos(Aη̂) cos(Bη̂) = 1

4
[�(A + B) + �(−A − B) + �(A − B) + �(−A + B)]

= 1

2
(A.3)

and∫
D(η, η̂) cos(Aη̂) sin(Bη̂) = − i

4
[�(A + B) − �(A − B) + �(−A + B) − �(−A − B)]

= − i

2
�(B − A). (A.4)

The first integral is (remember that m is odd)

bm
0 =

∫
D(η, η̂) cos(η̂)m = 1

2m−1

(m−1)/2∑
k=0

(
m

k

)∫
D(η, η̂) cos[(m − 2k)η̂]

= 1

2m

(m−1)/2∑
k=0

(
m

k

)
= 1

2
. (A.5)

The second integral is

bm
n =

∫
D(η, η̂) cos(η̂)m−2n sin(η̂)2n

=
∫

D(η, η̂)
1

2m−2n−1

(m−1)/2−n∑
k=0

(
m − 2n

k

)
cos[(m − 2(k + n))η̂]

× 1

22n

⎧⎨
⎩2

n−1∑
j=0

(−1)n−j

(
2n

j

)
cos[(2n − 2j)η̂] +

(
2n

n

)⎫⎬
⎭

= 1

2m−1

(m−1)/2−n∑
k=0

(
m − 2n

k

) n−1∑
j=0

(−1)n−j

(
2n

j

)
+

1

22n+1

(
2n

n

)

= 1

2m−1

2m−2n

2

[
−1

2

(
2n

n

)]
+

1

22n+1

(
2n

n

)
= 0. (A.6)

And the last integral is then

cm
n =

∫
D(η, η̂) cos(η̂)m−(2n+1) sin(η̂)2n+1

=
∫

D(η, η̂) cos(η̂)m−(2n+1)[1 − cos2(η̂)]n sin(η̂)

11
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=
∫

D(η, η̂)

n∑
�=0

(−1)�
(

n

�

)
cos(η̂)m−(2n+1)+2� sin(η̂)

=
n∑

�=0

(−1)�
(

n

�

)
(−i)

2m−1+2(�−n)

{
1

2

(
m − 1 + 2(� − n)

(m − 1)/2 + � − n

)

+
(m−1)/2+�−n−1∑

k=0

(
m − 1 + 2(� − n)

k

)
�[1 − (m − 1 + 2(� − n) − k)]

}

= − i

2m−2n

n∑
�=0

(
−1

4

)� (
n

�

)(
m − 1 + 2(� − n))

(m − 1)/2 + � − n

)

= − i

2m

(
2n

n

)(
m − 1 − 2n

(m − 1)/2 − n

)(
(m − 1)/2

n

)−1

. (A.7)

We have that for all m odd

d(m)(p) = 1

2
− 1

2

(m−1)/2∑
n=0

am
n (1 − 2p)2n+1, (A.8)

where

am
n ≡ 1

4m−1

(
m

2n + 1

) [(
2n

n

)(
m − 1 − 2n

(m − 1)/2 − n

)(
(m − 1)/2

n

)−1
]2

. (A.9)

Observe that d(m)(p) is concave in p ∈ [0, 1
2 ] (it is simply a sum of an affine plus concave

functions) and d(m)(p) < d(m+2)(p) for all p ∈ (0, 1
2 ). To demonstrate the latter, we use that

d(m)(0) = 0 and am
s > 0 ∀s. Thus, from (A.8) at p = 0, we have that

(m−1)/2∑
s=0

am
s = 1 ∀m � 1. (A.10)

Therefore

am+2
(m+1)/2 =

(m−1)/2∑
s=0

(
am

s − am+2
s

)
simply by applying (A.10) to m and to m + 2. Observe that (1 − 2p)n < (1 − 2p)n

′
for all

n > n′ and p ∈ (0, 1
2 ), thus

am+2
(m+1)/2(1 − 2p)m+2 <

(m−1)/2∑
s=0

(
am

s − am+2
s

)
(1 − 2p)2s+1

(m+1)/2∑
s=0

am+2
s (1 − 2p)2s+1 <

(m−1)/2∑
s=0

am
s (1 − 2p)2s+1

and thus d(m)(p) < d(m+2)(p).
In the large m limit, we have that

lim
m↑∞

d(m)(p) = 1

π
arcos(1 − 2p),

which is the expected result [27].

12
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Appendix B. Optimal learning algorithm

The basic ingredient to compute the optimal learning algorithm is the joint probability
distribution of the variables σB, h and b. Given that P(σB, h, b|m) = �(σBb)P(h, b|m),

we will start our inference task by computing the distribution of the post-synaptic fields:

P(h, b|m) = 〈δ(h − J · S/|J|)δ(b − B · S/|B|)〉S

=
∫ ∞

−∞

dĥ

2π
e−iĥh

∫ ∞

−∞

db̂

2π
e−ib̂b

〈
exp

(
iĥ

J · S
|J| + ib̂

B · S
|B|

)〉
S

and assuming that [B]j =
√

N
m

�(m + 1 − j) we can suppose that the student learns this rule
in such a way that [J]j � J�(m + 1 − j) + εj , where εj � |J| are i.i.d. variables. Therefore

J
|J| = R√

m
− ε

|J| ,

where R is the teacher–student overlap and ε ≡ ∑m
j=1 εj /m. Let us define the variables

ϕj ≡ εj − ε

|J| ,

with the properties of
∑m

j=1 ϕj = 0 and

∑
j>m

ε2
j

|J|2 = 1 − R2 −
m∑

j=1

ϕ2
j .

Thus the trace over the spin variables gives

〈
exp

(
iĥ

J · S
|J| + ib̂

B · S
|B|

)〉
S

=
N∏

j=1

1

2

∑
S=±1

exp

[
i

(
ĥ[J]j
|J| +

b̂[B]j
|B|

)
S

]

=
m∏

j=1

cos

(
ĥ
J + εj

|J| +
b̂√
m

)∏
j>m

cos

(
ĥεj

|J|

)

=
m∏

j=1

cos

(
ĥR + b̂√

m
+ ĥϕj

)∏
j>m

cos

(
ĥεj

|J|

)

� cos

(
ĥR + b̂√

m

)m m∏
j=1

[
1 − ĥϕj tan

(
ĥR + b̂√

m

)
+ O

(
ϕ2

j

)]

× exp

⎛
⎝− ĥ2

2

∑
j>m

ε2
j

|J|2

⎞
⎠
⎡
⎣1 + O

⎛
⎝∑

j>m

ε4
j

|J|4

⎞
⎠
⎤
⎦

� cos

(
ĥR + b̂√

m

)m

exp

(
−1 − R2

2
ĥ2

)
+ O

⎛
⎝ m∑

j=1

ϕ2
j

⎞
⎠ .

13
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Therefore, and using that m is odd,

P(h, b|m) � 1

2m−1

(m−1)/2∑
k=0

(
m

k

)∫ ∞

−∞

dĥ

2π

db̂

2π
exp

(
−1 − R2

2
ĥ2 − ihĥ − ibb̂

)

× cos

[
(m − 2k)

b̂ + Rĥ√
m

]

= N (h|Rb, 1 − R2)
1

2m

(m−1)/2∑
k=0

(
m

(m − 1)/2 − k

)
[δ(b − μk) + δ(b + μk)], (B.1)

where μk = (2k + 1)/
√

m and N (x|μ, σ 2) is a normal distribution in x, centered at μ, with
variance σ 2.

From (B.1), we can compute the joint distribution of the variables h and σB

P(σB, h|m) = 1

2m

(m−1)/2∑
k=0

(
m

(m − 1)/2 − k

)
N (σBh|Rμk, 1 − R2), (B.2)

which implies that

P(φ|m) =
∑

σB=±1

∫ ∞

−∞
dhP(σB, h|m) δ(φ − σBh)

= 1

2m−1

(m−1)/2∑
k=0

(
m

(m − 1)/2 − k

)
N (φ|Rμk, 1 − R2). (B.3)

The conditional probability of the field b given σB and h can be obtained from (B.1) and (B.2).
It is a simple inference exercise to find the conditional distribution of the field b given the

stability φ

P(b|φ,m) = 1

2

N (φ|R|b|, 1 − R2)
∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
δ(|b| − μk)∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
N (φ|Rμk, 1 − R2)

.

The conditional expectation of the field |b| is

〈|b|〉b|φ,m =
∫ ∞

−∞
db|b|P(b|φ)

=
∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
μkN (φ|Rμk, 1 − R2)∑(m−1)/2

k=0

(
m

(m−1)/2−k

)
N (φ|Rμk, 1 − R2)

. (B.4)

Appendix C. Derivation of (15)

In this appendix, we continue the development of (14)

Im1,m2 =
∫

dφP(φ|mB)ϒ(φ|R,m1)ϒ(φ|R,m2)

= 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

) (m1−1)/2∑
�1=0

(m2−1)/2∑
�2=0

R4

m1m2

∫ 1

−1
dt1t1

∫ 1

−1
dt2t2

×
∫

dφN (φ|Rμk)N
(

φ

∣∣∣∣ R√
m1

(2�1 + 1 − t1)

)
N
(

φ

∣∣∣∣ R√
m2

(2�2 + 1 − t2)

)
,

14
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where all the normal distributions have exactly the same variance 1 − R2. The integral over
φ is simple and produces a bi-variate Gaussian distribution in t1 and t2

Im1,m2 = 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

) (m1−1)/2∑
�1=0

(m2−1)/2∑
�2=0

R2

√
m1m2

×
∫

Dt

dtt1t2N (t|t�1,�2,k;Σ) (C.1)

where t = (t1, t2)
T,Dt ≡ (−1, 1) × (−1, 1), t�1,�2,k = (

√
m1 δ�1,k,

√
m2 δ�2,k)

T and

δ�j ,k ≡ 2�j + 1√
mj

− 2k + 1√
mB

, (C.2)

Σ ≡ 2
1 − R2

R2

(
m1

1
2

√
m1m2

1
2

√
m1m2 m2

)
. (C.3)

From (10a), all the entries of the covariance matrix (C.3) are small; therefore all the
distributions are concentrated around t�1,�2,k. Let t	k be the vector that corresponds to the
largest term in (C.1). Its components are

�	
mj ,k

≡
[∣∣∣∣
√

mj

mB

2k + 1

2
− 1

2

∣∣∣∣
]

(C.4)

√
mj δ	

mj ,k
= 2�	

mj ,k
+ 1 −

√
mj

mB
(2k + 1), (C.5)

where [|r|] is the closest integer to r ∈ R; thus
√

mj δ	
mj ,k

∈ (−1, 1). All the other

vectors can be expressed as t�1,�2,k = t	k + 2n, where n = (n1, n2)
T, nj = −�	

mj ,k
,−�	

mj ,k
+

1, . . . ,−1, 1, . . . ,−�	
mj ,k

+ (mj − 1)/2. We have that

Im1,m2 = 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
R2

√
m1m2

×
{∫

Dt

dtt1t2N
(
t
∣∣t	k;Σ) +

∑
n

∫
Dt

dtt1t2N
(
t
∣∣t	k + 2n;Σ )

}
.

Observe that the vectors t	k are always strictly inside the domain Dt. They can never be
in the boundary of the domain given that mj is odd, and then the argument of the rhs of
(C.4) is never in Z1/2 (which would produce the largest possible value of

√
mj δ	

mj ,k
). Thus,

the largest contribution to the sum over n is of O[exp(−ε2/ max{λ ∈ spec(Σ)})], where
ε ∼ 1 − |√mj δ	

mj ,k
| > 1

2 and

max{λ ∈ spec(Σ)} = 1 − R2

R2

[
m1 + m2 +

√
m2

1 + m2
2 − m1m2

] � 1,

according to (10a). Within the same approximation error, we can suppose that the centre of
the zeroth normal distribution is located inside the domain and sufficiently farther from the
boundary. Thus,

Im1,m2 � 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
R2

√
m1m2

∫
R2

dtt1t2N
(
t
∣∣t	k;Σ )

+ O

(
exp

[
− ε2

max {λ ∈ spec(Σ)}
])

.

15
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Thus

Im1,m2 � 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
R2

√
m1m2

∫ ∞

−∞
dt2t2N

(
t2

∣∣∣∣δ	
m2,k

; 2m2
1 − R2

R2

)

×
∫ ∞

−∞
dt1t1N

(
t1

∣∣∣∣δ	
m1,k

+
1

2

√
m1

m2
(t2 − δ	

m2,k
); 3

2
m1

1 − R2

R2

)

= 1 − R2

[
1 − 1

2mB−1

(mB−1)/2∑
k=0

(
mB

(mB − 1)/2 − k

)
δ	
m1,k

δ	
m2,k

]
.
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